Pages

Saturday, September 25, 2010

Vector Integration: Line Integral


In mathematics, a line integral (sometimes called a path integralcontour integral, or curve integral; not to be confused with calculating arc length using integration) is an integral where the function to be integrated is evaluated along a curve.
The function to be integrated may be a scalar field or a vector field. The value of the line integral is the sum of values of the field at all points on the curve, weighted by some scalar function on the curve (commonly arc length or, for a vector field, the scalar product of the vector field with a differential vector in the curve). This weighing distinguishes the line integral from simpler integrals defined on intervals. Many simple formulae in physics (for example,W=F·s) have natural continuous analogs in terms of line integrals (W=∫C F· ds). The line integral finds the work done on an object moving through an electric or gravitational field, for example.


For some scalar field f : U ⊆ Rn → R, the line integral along a piecewise smooth curve C ⊂ U is defined as
\int_C f\, ds = \int_a^b f(\mathbf{r}(t)) |\mathbf{r}'(t)|\, dt.
where r: [a, b] → C is an arbitrary bijective parametrization of the curve C such that r(a) and r(b) give the endpoints of C.
The function f is called the integrand, the curve C is the domain of integration, and the symbol ds may be intuitively interpreted as an elementary arc length. Line integrals of scalar fields over a curve C do not depend on the chosen parametrization r of C.

For a vector field F : U ⊆ Rn → Rn, the line integral along a piecewise smooth curve C ⊂ U, in the direction of r, is defined as
\int_C \mathbf{F}(\mathbf{r})\cdot\,d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t))\cdot\mathbf{r}'(t)\,dt.
where · is the dot product and r: [a, b] → C is a bijective parametrization of the curve C such that r(a) and r(b) give the endpoints of C.
A line integral of a scalar field is thus a line integral of a vector field where the vectors are always tangential to the line.
Line integrals of vector fields are independent of the parametrization r in absolute value, but they do depend on its orientation. Specifically, a reversal in the orientation of the parametrization changes the sign of the line integral.
(from Wikipedia)







0 people rectified:

Post a Comment